
to the amount of circumferential deformation for thermal expansion of the semifinished product. 
The correctness of this assumption follows from analyzing the solution in [9] if the consid- 
erable anisotropy of semifinished product material properties is considered. Extreme values 
of residual deflections of the inner surface obtained by experiment in [9] are shown by 
circles in Fig. 4. Straight line 2 relates to values of residual deflections for the central 
surface of the cylinder which is expressed in terms of residual deflection of front surfaces 
by the equation w, = 0.5 (w(r I) + w(r2)). 
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DISLOCATIONS AND DISCLINATIONS IN NONLINEAR ELASTIC BODIES 

WITH MOMENT STRESSES 

L. M. Zubov and M. I. Karyakin UDC 539.3 

A theory of dislocations and disclinations in elastic media which exhibit moment stresses 
and experience considerable strains is constructed. The marked effect of Volterra type 
dislocations in a Kosser nonlinearly elastic continuum is demonstrated by solving the problem 
of determining displacement and rotation fields in a multiconnected region with prescribed 
fields for the strain tensor and the bending strain tensor. Expression of Volterradislo- 
cation characteristics in terms of the strain tensor field is given by means of a multiplica- 
tive contour integral. As a special case consideration is given to plane strain with which 
it is possible to delineate dislocations and disclinations in terms of normal contour inte- 
grals. Within the limits of moment nonlinear elasticity theory accurate solutions are found 
for the problem of screw dislocations and wedge dislocations. The effect of considering 
moment stresses and nonlinearity on the behavior of solutions close to the axis of a defect 
is analyzed. 

I. In a model of a Kosser continuum [1-4] each particle of a solid has the degrees 
of freedom of an absolutely solid body. The position of particles in a deformed configura- 
tion is determined by radius-vector R and by strictly orthogonal tensor H called below 
the microrotation tensor. By using the principle of material indifference [5] it is pos- 
sible to show that specific (per unit volume of reference configuration) potential energy 
W of an elastic Kosser continuum will depend on deformation of the body by means of two 

~econd rank tensors: tensor U = (V~ T , called in the future the first measure of strain, 
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and a tensor (more accurately pseudotensor) L called the first tensor of bending strain 
and determined from the relationship 

L • E = - - ( v ~  T. ( 1 . 1 )  

Here E is the unit tensor; V ~ = rSS/ax s is nabla-operator of reference (undeformed) config- 
uration; x s are Lagrange coordinates. Vectors r s are found from the equations rs.rh = 6kS, 

r k = ~r/ax k (6k s is Kronecker symbol~ r is radius-vector of a particle in reference config- 
uration). 

For a gyrotropic medium W will be a gyrotropic function of U and L , i.e., the following 
requirement is satisfied 

W ( Q  T .  U .  Q, Q T .  L .  Q) = W(U, L) ( 1 . 2 )  

( Q i s  a n y  s t r i c t l y  o r t h o g o n a l  t e n s o r ) .  

By using a representation of strictly orthogonal tensor H in terms of finite rotation 
vector 8 [6] 

H=P~I.P_:P_.P~ 1, P~:E___+Ex0, (1.3) 

by means of (i.I) we obtain 

L= 4 (V~ �9 E+-~EX0, = 0 . 0 .  (1.4) 

With linearization for the case of small strains of tensors U and L with respect 
to 0 and vow (w = R- r is displacement vector) we arrive at strain tensor e and a bending- 
twisting vector V~ used [i] in linear moment theory of elasticity: 

U m E +  e, e = V ~  • 0, L ~ v ~  ( 1 . 5 )  

For simplicity we assume that both mass external forces and loads, and loads distributed 

over the body surface are absent. Then from the variation principle 6 ~ Wdv = 0 we obtain 
v 

an equilibrium equation 

V ~ �9 (T* �9 H) : 0, V ~ �9 (M* �9 H) + (V~ T �9 T* �9 H)x  = 0, ( 1 . 6 )  

T* = OWIOU, M* = OW/OL~ 

and boundary conditions 

n -  T* �9 H = 0 ,  n .  M* �9 H = 0 f o r O v ,  ( 1 . 7 )  

where v is the volume occupied by the elastic Kosser medium in reference configuration; n 
is normal to the boundary of the body ~v; symbol Px vector invariant of second rank tensor 
P: ~ p l~r h (P r~r~)~ ~ • r~. By using the Piola identity [5] Eq. (i.6) may be written in spatial 
(Euler) coordinates X ~ (a = i, 2, 3): 

V " T - - - - 0 ,  V " M + Tx----- 0 i n  V, N .  T = 0 ,  N - M - - - - 0  v n O V ;  ( 1 . 8 )  

T = J - I (v~  �9 T* �9 H,  M = J - I (v~  �9 M* �9 H,  ( 1 . 9 )  

V = Re'O/OXc', R~----- OR/OX F', t t  s �9 R~ = 6~ ~, J = det  (v~ 

Here V is spatial gradient operator; V is the region occupied by the body in a deformed 
state; N is normal to aV; T is stress tensor; M is moment stress tensor. 

The equations of nonlinear moment theory of elasticity formed have been obtained by 
other methods [2-4]. It is noted that models of a solid taking account of moment stresses 
are used in describing structurally-inhomogeneous media [7], in liquid crystal theory [8], 
and in other questions of deformed body mechanics. 

Tensors U and L are similar to the Cauchy-Green measure of strain [5]. By changing 
the places of reference and deformed configurations, i.e., by making the changes R-~r, 
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V~ we obtain tensors which are analogs of the measure of Almanzi strain [5] 
in classical nonlinear elasticity theory: 

u = V r . H ,  l ~  4 ( ~ ) - -  4+0---~(V0). E - -  - f - E X  O . ( 1 . 1 0 )  

Tensors u and 1 will be called the second measure of strain and the second tensor 
of strain respectively. From (1.3), (1.4), (i.i0) the following relationship emerges 

~ u - I = H  T .  U �9 H, u -1" t = - - H  r .  L �9 H. ( 1 . 1 1 )  

By placing Q = g in (1.2) on the basis of (i.ii) we obtain for a gyrotropic material W = 
W(u,l). In exactly the same way it is possible to show that in a gyrotropic Kosser contin- 
uum stress tensors T and moment stresses M On strain of the medium through the second 
measure of strain and the second bending strain tensor. 

Definitive relationships for materials with bonds are constructed by means of introducing 
Lagrange multipliers [5]. Imposition of a condition of incompressibility 

de tU ----- I ( 1 . 1 2 )  

leads to an addition in expression (1.9) for T independent of strain of spherical tensor 
pE . Identification of microrotation tensor H with macrorotation tensor A = (v~ �9 v~ -I/~" 
v~ leads to vector connection 

Us=0" (1.13) 

Linearization of (1.13) taking account of (1.5) gives a known relationship for a Kosser 
continuum 0 = (I/2)V ~ • w [9]. In this case the expression for M does not change and the 
expression for tensor T for incompressible materials takes the form 

T- - - -pE  + (y~ T .  (OW/OU + q -  D) �9 H, ( 1 . 1 4 )  

where D = --E • E is Levy-Civita tensor [5, 6]; q is independent of strain vector. 

2. We consider the problem of determining displacement and microrotation fields for 
a Kosser continuum from known fields for tensor u and ;, which are prescribed as twice 
differentiated functions of Euler coordinates X a. From (1.3), (I.i0) we have 

~HT/oxa= Ha . HT, H a = - - E  • ( R a "  l). ( 2 . 1 )  

Necessary and sufficient conditions for resolution of these equations with respect to H con- 
tain nine independent relationships and they have the form 

O~/OXa- -OHjOX ~ = ~ a '  H ~ - - n ~ .  H a. ( 2 . 2 )  

As in [i0], the solution of Eqs. (2.1) may be written by means of a multiplicative 
integral [ii] 

M 

H ( M ) = S  (E+  dn.n).H~, n =  n~Ra. (2.3) 
M 0 

Here  M 0 i s  a p o i n t  o f  r e g i o n  V in  wh ich  t h e  i n i t i a l  v a l u e  o f  t e n s o r  H(M 0) = H 0 ;  i s  p r e s c r i b e d ;  
M i s  c u r r e n t  p o i n t .  I n  s i n g l y  c o n n e c t e d  r e g i o n  V t h e  v a l u e  o f  H (M) does  n o t  depend  on 
c h o i c e  o f  t h e  c u r v e  c o n n e c t i n g  p o i n t s  M 0 and M. A f t e r  d e t e r m i n i n g  H by  Eq. ( 2 . 3 )  t h e  
p o s i t i o n  o f  p a r t i c l e s  o f  t h e  medium in  t h e  r e f e r e n c e  c o n f i g u r a t i o n  i s  found  f rom ( 1 . 1 0 )  
in quadratures 

M 

r(M) = d n . ( u . n D  + r(Mo). ( 2 . 4 )  
M o 

Necessary and sufficient conditions for independence of the integral in (2.4) from the inte- 
gration path in a singly connected region consist of fulfilling the equalities 

R ~ • (Ou/OX a) + R a • u .  H~ = 0 .  ( 2 . 5 )  

Conditions ( 2 . 2 )  and ( 2 . 5 )  which consist of 18 scalar relationships are relationships for 
compatability of strains in nonlinear moment elasticity theory. Similar relationships 
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for deformation tensors U--E and L, prescribed as functions of Lagrange coordinates were 
obtained in [3]. 

If region V occupied by an elastic body in a deformed ,condition is multiconnected, 
then displacements w =R--r and microrotations determined by Eqs. (2.3) and (2.4) will 
generally speaking be single-valued. The single value nature is eliminated if the region 
is transformed into a singly connected region with provision of the required number of sec- 
tions. Vectors r and 8 may undergo jumps on intersecting each section. It is possible 
to show by the method in [10] that jumps are described by the relationships 

H + : ~ . H _ ,  0 + - -  4 ( i ) 4 - -~0_  m + O_ +--~- O_X m , (2 .6 )  

= 2(t +trfl)-1flx, r+ = f t .  ~ +b, 

where ~ is a strictly orthogonal tensor constant for all points of each section; ~ and b 
are constant vectors. Equations (2.6) mean that if a nonlinearly elastic Kosser body occu- 
pying a multiconnected region in a stressed state in which measures of Almazi type strain 
u, I (and consequently stress tensor T and moment stress tensor M ) is cut, then in an 
unstressed state the position of opposite edges of a section will differ from each other 
in rigid movement. A similar proof for a nonlinearly elastic medium in moment stresses 
is given in [i0]. 

In the case of doubly connected region Q, b are expressed in terms of a field for 
strain tensors u,l by equations similar to those provided in [10]: 

~ T  Ho.~(E + da.n).H~, (2.7) 
M, 

b =  ~ dR'.u(R') �9 S ( E +  dR.H).H~ + ro . (E--  fiT). 
M o 

Thus, it is shown that in nonlinearly elastic bodies with moment stresses defects in 
the form of Volterra dislocations may exist. As in [10], defect parameters b and m are 
called Burgers vector and Frank vector respectively. The set of equations for determining 
the stressed state for a nonlinearly elastic Kosser medium containing Volterra dislocations 

with prescribed characteristics b and ~ consist of equilibrium Eqs. (1.8) in which tensors 
T and Mare expressed in terms of u and I, compatibility Eqa. (2.1), (2.5), and relation- 
ships (2.7). 

Similar to the previous occasion we consider the problem of determining displacements 
and microrotations in a non-singly connected region occupied by a Kosser medium in an unde- 
formed configuration from known fields for tensors U and L, prescribed as continuous and 
twice differentiated functions of Lagrange coordinates. 

3. By limiting ourselves to the case of plane strain described by the relationships 

X1 = XI(xl ,  x2), X~ = X ~ I ,  x2), X3 = xs, (3 .1 )  

where x k and X k a re  c o o r d i n a t e s  o f  p o i n t s  f o r  a medium on a C a r t e s i a n  b a s i s  {ek} be fo re  
and a f t e r  de fo rmat ion  r e s p e c t i v e l y ,  i t  i s  p o s s i b l e  to  s i m p l i f y  s t a t emen t  of  the  problem 
f o r  s t r e s s e s  c r e a t e d  by an i s o l a t e d  d e f e c t ,  and in p a r t i c u l a r  to  o b t a i n  an exp re s s ion  f o r  
i t s  c h a r a c t e r i s t i c s  in  terms of  normal contour  i n t e g r a l s .  We i n t r o d u c e  complex c o o r d i n a t e s  
[5, 12] 

= Zl ~-ix2,  ~ = X l - - i x 2 ,  Z = Xl ~- ~X 2, ~ =  X l - -  iX2. 

Plane strain (3.1) is prescribed by means of a complex-sign function 

z = z (~ ,  ~, X 8 = x 3. ( 3 . 2 )  

By considering the case when the region occupied by a body in the undeformed condition 
is not sing%y connected we assume that tensors U and L are prescribed: 

L = L,(~, ~ flf3 + L2(~, ~)f- ~f3," 
U = U~(~, ~) f~f~ + f3fs, a, ~ ---- I, 2. 

Here {f~}, {f~} are complex bases corresponding to complex coordinates ~, ~ [12], 

(3.3) 

(3.4) 

[3 ~_ [3 = e3- 
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We find tensor H in the form 

H = exp (iz)flf 1 + exp (--iz)f~f2 + f~fs. (3 .5)  

In this general arrangement the rotation tensor with plane strain X, which is subject to 
determination, is the angle of finite rotation for particles of the medium. By substituting 
(3.3), (3.5) in (i.I), we obtain 

0%/0~ = LI ,  OX I~  = L~. ( 3 . 6 )  

Resolution condition (3.6) with respect to X is written as 

on/a~ = OLJO~. (3.7) 

By comparing the expression for the strain gradient V~ to transformation 
(3.2) with the expression V~ U . H ,  obtained from determining U taking account of (3.4) 
and (3.5) we find that 

Oz/O~ = U~ exp (iX), Oz/O~ = U~ eXp (iX). 

A c c o r d i n g  t o  ( 3 . 6 )  t h e  r e s o l u t i o n  c o n d i t i o n  f o r  t h e s e  e q u a t i o n s  h a s  t h e  fo rm 

au~/a~ -- aUdIO[+ i(L1U~ -- LzU~) = 0. ( 3 . 8 )  

E q u a t i o n s  ( 3 . 7 )  and ( 3 . 8 )  a r e  c o m p a t a b i l i t y  e q u a t i o n s  w i t h  p l a n e  s t r a i n  f o r  t h e  medium. 
They a r e  e q u i v a l e n t  t o  t h r e e  r e a l  e q u a t i o n s .  

A n a l y s i s  o f  t h e  n a t u r e  o f  m u l t i - v a l u e  f o r  f u n c t i o n s  X and z in  a d o u b l y  c o n n e c t e d  r e g i o n  
i s  c a r r i e d  o u t  s i m i l a r  t o  [ 1 2 ] .  I n  p a r t i c u l a r ,  in  t h e  s e c t i o n  t r a n s f o r m i n g  t h e  r e g i o n  i n t o  
a s i n g l e - v a l u e  one t h e  l i m i t i n g  v a l u e s  o f  f u n c t i o n s  X and z a r e  c o n n e c t e d  by t h e  r e l a t i o n -  
s h i p s  

X + - - z - = K ,  g = ~ L l d  ~ + L2cl~; (3 .9)  

z+ = z_ exp (iK) + 6; (3.10) 

: z 0 (l - -  exp (iK)) + ~ exp (iz) (U~d~ + V~d[) ( 3 . 1 1 )  

(z  0 i s  a p r e s c r i b e d  v a l u e  o f  f u n c t i o n  z a t  a c e r t a i n  p o i n t  o f  t h e  r e g i o n ) .  R e l a t i o n s h i p  
( 3 . 1 0 )  i s  a g e n e r a l i z a t i o n  o f  t h e  W e i n g a r t e n  t h e o r y  o f  l i n e a r  e l a s t i c i t y  t h e o r y  in  t h e  c a s e  
o f  p l a n e  s t r a i n .  I t s  r e a l  f o r m  i s  a s  f o l l o w s  

w + - - w _ = ~ X  R _ + - ~ - ~ x R -  + b  

( m  = 2 t a n  ( K / 2 )  e3 i s  F r ank  v e c t o r ,  b = Re$ 1 + Im #e2 i s  B u e r g e r s  v e c t o r ) .  

The boundary problem for plane strain of a body containing an isolated defect with 
prescribed characteristics consists of equilibrium Eqs. (1.6), boundary conditions (1.7) 
in which tensors T* and M* are expressed in terms of U and L , compatability Eqs. (3.7) 
and (3.8), and relationships (3.9) and (3.11) prescribing dislocation parameters. 

As an example we consider the problem of determining mechanical fields created by an 
isolated defect in an elastic ring a ~ r ~ b. Tensors U and L, which satisfy the compata- 
bility conditions and equilibrium equations are found in the form 

L Lr(r ) e~e z + L~(r) %%; ( 3 . 1 2  ) 

U : U I (r) e,,e r + U~(r) er162 + ezez, ( 3 . 1 3 )  

where r, %, z are cylindrical coordinates; er, em, e z are reference vectors corresponding to 
them. In this case Eq. (3.7) takes the form dLm/dr + Lr = O, whence according to (3.9) 
we obtain 

Lr = K[(2nr). (3.14) 

Relationships (3.8) taking account of (3.12)-(3.14) are [ransformed: 
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L , . ( r ) - - O ,  dUJdr  + U2/r + • = 0 ,  ~ = ( 2 ~ + K ) / 2 ~ .  ( 3 . 1 5 )  

Assuming that X = 0 with ~ = 0 we find that X = (x - i)~. The microrotation tensor H is 
determined in the same way by (3.5). By calculating 8 from (3.11), similar to [12] it is 
possible to show that representation (3.12), (3.13) describes the deformed state of a cylin- 
der with a wedge disclination. 

A study of the stressed state is carried out for a "physically linear n material whose 
specific potential energy is taken in the form 

W = -~- tr~a + - ~  tr (a'eT) + - ~ ' ~  tra2 + ( 3 . 1 6 )  

_5_tr . ~  2 _ ~ ? + ~  ( L . L T ) + ~ J ! t r L  2, U - - E  L4-  2 tr e = 

(~, ~, a ,  6, N, y are elastic constants). Taking this into account it is possible to show 
that the equilibrium equations in moments are satisfied identically, and from the equilibri- 
um equations in stresses one remains nontrivial 

dU, dU 2 U, U~ (k -4- ~) ( t  - -  • 
(~ + 29)--~- + ~--~- + [~(i -- • + 2~t] -?-- + [k (t --  • -- 2~t• --f - = 2  r 

(3.17) 

Boundary conditions (1.7) are reduced to the relationship 

(~ + 2~t) U,(r) "4- )~U~(r) = 2 ()~ + ~t), r = a, b. ( 3 . 1 8 )  

Of special interest is the case of a solid cylinder (a = 0). By solving boundary prob- 
lems (3.15), (3.17), (3.18) and directing parameter a to zero, for functions U I and U 2 we 
obtain 

l - - 2 v  XxpX_iq_ 1 

U2 l - -2v  u pZ-1+ • r 
--l--v t + x  (t q- • (t -- v) ' fl=-~' v = - -  2(E+ ~)" 

( 3 . 1 9 )  

Expressions for components of stress tensor T do not have singularity on the dislocation 
axis and they coincide with those calculated in momentless nonlinear elasticity theory [12]. 

The components of moment stress tensor M differing from zero are written in the form 

• -- t ~ -- I 

M=3 = (? + ~) r~(r)' M~2 = (? -- N) r UI( 0 U~ (r)" (3.20) 

From these relationships and (3.19) it can be seen that in a solid cylinder moment stress 
M23 has singularity of the order of p-1 with • > 1 and p-g with • < i, and stress M32 has 
singularity of the order p-z with • > 1 and pz-2~ with ~ < I. Linearization of expressions 
(3.20) with respect to parameter • - 1 is carried out with p > 0 to equations known from 
linear elasticity theory [13] according to which with p ~ 0 moment stresses have a singularity 
of the order of p-1 for all g # i. 

On the basis of (3.16) taking account of (3.14) and (3.19) it is easy to establish 
that in calculating moment stresses the potential energy arriving in a unit length of a 
cylinder with a disclination and calculated by the equation 

b t2~, •  
H = g ( •  g ( • 2 1 5  •  

a 

has a logarithmic singularity with a + O. 

4. We consider the following transformation of reference configuration to current config- 
Uration: 

R =  R(r), �9 = ~, Z = a~ + z ( 4 . 1 )  

(r, 9, z, and R, r Z are cylindrical coordinates in the reference and current configura- 
tions respectively). This transformation describes strain for a cylinder containing a screw 
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dislocation with Burgers vector b = 2~ae~z. We prescribe the representation of microrotation 
tensor H: 

H = e,er ~- cos % (r) (%% + e~ez) + sin % (r) (%e z - -  ezer (4.2) 

Measures of strain U and L corresponding to (4.1) and (4.2) have the form 

U = dR~ erer + + (R cos % + a sin %) e~e~ + 

l + -7- (a cos % - -  R sin %) ewe, + sin %e~er + cos %e~e~; 

sin x cos x -  1 e~ez. 
L = e~e~ + - -7- -  ecer + - - - F - - -  . . . . . .  

(4.3) 

(4.4) 

We limit ourselves to considering an uncompressible pseudocontinuum, i.e., we shall assume 
that connections (1.12) and (1.13) are applied to the material. This makes it possible 
to find straight away functions R(r) and x(r): 

a 

R (r) = ~ / ~  + A, % (r) ---- arctg r + ] / ~  + A" 

C o n s t a n t  A i s  d e t e r m i n e d  f rom t h e  b o u n d a r y  c o n d i t i o n s .  In  p a r t i c u l a r ,  f o r  a s o l i d  c y l i n d e r  
R(0 )  = 0,  c o n s e q u e n t l y  A = 0 and 

�9 R(r )  = r, X(r) = arctg (a/2r). ( 4 . 5 )  

We consider a material with energy W = 2V tre n u --~2 tr2L+ ?+___/n tr(L.LT)+~trLt 
The problem of a screw dislocation for these materials without taking account of moment 
stresses was studied in [14]. In this case taking account of (1.14), (4.3)-(4.5) equilib- 
rium (1.8) for a solid cylinder is reduced to four relationships 

dp __ 2~ 4~ 4a ~ 
dr r + ~ + (6 + 2?) r (4r ~ + a2) 2 '  

4a 
q , = - - ( 8 + 2 ? ) ( 4 r ~ + a ~ ) a / 2 ,  q ~ = 0 ,  qz=O. 

Here  q r  = q 'e r ;  q~ = q ' % ;  qz = q ' e z "  As in  [ 1 4 ] ,  by  means o f  t h e s e  e q u a t i o n s  i t  i s  p o s s i b l e  

t o  show t h a t  i n  t h e  v i c i n i t y  o f  t h e  d i s l o c a t i o n  a x i s  t a n g e n t i a l  s t r e s s  Tcz i s  d i r e c t e d  
towards a finite limiting value 2~, and stress Tz9 increases in proportion to r -I as in 
linear elasticity theory. Moment stresses Mrr and M ~ are written in the form 

~ 2 (~ 4r27).~, (4.6) i . = a  ] 

M ~  = a 4 r ~  a 2 (@2 _~_ a2)a/2 -}- r 

If in solving (4.6) with r > 0 only first order terms with respect to parameter a are 
retained, then we arrive at solution of the problem of a screw dislocation within the limits 
of linear theory for a Kosser pseudocontinuum: 

M ~  --- - -  ?a/r% M ~ = ~la/r ~. (4.7) 

According to (4.6) and (4.7) the solution of linear theory has with r + 0 a stronger singu- 
larity in moment stresses compared with nonlinear theory. With an increase in distance 
from the dislocation axis the difference between the solutions of linear and nonlinear theory 
decrease, i.e., Mrr ~ Mrr ~ M~ ~ Mr ~ with r + =. The potential energy arising in a unit 
length of a cylinder with a dislocation has a logarithmic singularity on the cylinder axis. 
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USE OF THE SCATTERED LIGHT METHOD IN ORDER TO DETERMINE THE STRESS 

INTENSITY FACTOR KIII IN THREE-DIMENSIONAL PROBLEMS 

V. M. Tikhomirov and V. P. Tyrin UDC 620.171.5 

Strain "freezing" [i, 2] and scattered light [3] methods are used for experimental 
determination of the stress intensity factor (SIF) KI11 in studying solid structural elements 
with surface or internal cracks. The scattered light method exhibits considerable potential 
and marked advantages over the "freezing" method by making it possible to obtain the required 
data without cutting up the model. However, this method has not been used extensively due 
to the complexity of experiments and interpretation of measured results. For example, in 
[3] it is suggested that the model is examined in a plane perpendicular to the crack front 
by a light beam intersecting the tip of the crack. This illumination scheme requires care- 
ful selection of the immersion liquid and treatment of the crack edge surfaces, and also 
rotation of the model or the device around the point of intersection of the crack front 
by the beam. 

A simpler procedure is described in the present work for carrying out an experiment 
which makes it possible to carry over methods known in plane photoelasticity for treating 
experimental data for determining the SIF to the case of determining KIII for spatial cracks. 

For longitudinal shear stresses close to the tip of a crack are expressed as follows: 

% = % = ~ = %~ = O, ( 1 )  

%z =Km (2~r)-I/2sin(012), %z = Km(2=r) -ll~c~ (0/2), 

where x, y, z is an orthogonal coordinate system orientated so that axis z is tangential 
to the crack front at point O (Fig. i); r, 8 are polar coordinates. 

Since the value of optical difference for the path of the light beam due to the differ- 
ence in quasiprincipal stresses which operate in a plane perpendicular to the illuminating 
beam is measured by the scattered light method, then it will be most effective to examine 
it in plane xOy parallel to axis x. It is important that the direction of principal stresses 
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